Abstract

such that x≥0, F(x,u)-v≥0 , and F(x,u)-v T·x=0 where these are vector inequalities. We characterize the local upper Lipschitz continuity of the (possibly set-valued) solution mapping which assigns solutions x to each parameter pair (v,u). We also characterize when this solution mapping is locally a single-valued Lipschitzian mapping (so solutions exist, are unique, and depend Lipschitz continuously on the parameters). These characterizations are automatically sufficient conditions for the more general (and usual) case where v=0. Finally, we study the differentiability properties of the solution mapping in both the single-valued and set-valued cases, in particular obtaining a new characterization of B-differentiability in the single-valued case, along with a formula for the B-derivative. Though these results cover a broad range of stability properties, they are all derived from similar fundamental principles of variational analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.