Abstract
This paper is concerned with the study of the asymptotic behavior of a generalization of the Caginalp phase-field model subject to homogeneous Neumann boundary conditions and regular potentials involving two temperatures. This work follows on from a paper in which the well-posedness of the problem, the dissipativity of the system, and the existence of global and exponential attractors were demonstrated. In addition, a study on the semi-infinite cylinder was also carried out. Indeed, if it is true that the existence of a global attractor makes it possible to predict the asymptotic behavior of solutions on a bounded domain, it does not say that these solutions converge. After having shown the existence of the global attractor, it is therefore important to look at the convergence of the solutions over time. There are several methods for determining the asymptotic behavior of the solutions of a differential system. We can mention the one that consists of transforming the given differential equations into integral equations and then applying the classical Picard successive approximation procedure to them. This work is devoted to the study of the convergence of solutions to steady states, adapting a well-known result concerning Lojasiewicz-Simon’s inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.