Abstract

We study the problem of the stability of solitary waves propagating in fluid-filled membrane tubes. We consider only waves whose speeds are close to speeds satisfying a linear dispersion relation (it is well known that there can be four families of solitary waves with such speeds), i.e., the waves with small (but finite) amplitudes branching from the rest state of the system. In other words, we use a weakly nonlinear description of solitary waves and show that if the solitary wave speed is bounded from zero, then the solitary wave itself is orbitally stable independently of whether the fluid is in the rest state at the initial time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.