Abstract

ABSTRACT Formation of the feldspathoid sodalite (Na6Al6Si6O24·2NaCl) by reaction of nepheline (NaAlSiO4) with NaCl-bearing brines was investigated at 3 and 6 kbar and at a constant temperature of 750 °C to determine the brine concentration at which sodalite forms with variation in pressure. The reaction boundary was located by reaction-reversal experiments in the system NaAlSiO4–NaCl–H2O at a brine concentration of 0.16 ± 0.08 XNaCl [= molar ratio NaCl/(NaCl + H2O)] at 3 kbar and at a brine concentration of 0.35 ± 0.03 XNaCl at 6 kbar. Characterization of the sodalite using both X-ray diffraction and infrared spectroscopy after treatment in these brines indicated no obvious evidence of water or hydroxyl incorporation into the cage structure of sodalite. The data from this study were combined with earlier results by Wellman (1970) and Sharp et al. (1989) at lower (1–1.5 kbar) and higher (7–8 kbar) pressures, respectively, on sodalite formation from nepheline and NaCl which models as a concave-down curve in XNaCl – P space. In general, sodalite buffers the concentration of neutral aqueous NaCl° in the brine to relatively low values at P < 4 kbar, but NaCl° increases rapidly at higher pressures. Thermochemical modeling of these data was done to determine the activity of the aqueous NaCl° relative to a 1 molal (m) standard state, demonstrating very low activities (<0.2 m, or 1.2 wt.%) of NaCl° at 3 kbar and lower, but rising to relatively high activities (>20 m, or 54 wt.%) of NaCl° at 6 kbar or higher. The results from this study place constraints on the concentration of NaCl° in brines coexisting with nepheline and sodalite and, because of the relative insensitivity of this reaction to temperature, can provide a convenient geobarometer for those localities where the fluid compositions that formed nepheline and sodalite can be determined independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.