Abstract

Small unilamellar liposomes containing carboxyfluorescein (CF) and composed of various unsaturated and saturated phospholipids with or without cholesterol were incubated in the presence of mouse serum at 37°C. Liposomes composed of egg L-α-phosphatidylcholine (PC), L-α-dioleoylphosphatidylcholine (DOPC) or sphingomyelin (SM) became rapidly permeable to entrapped CF but incorporation of cholesterol into such liposomes reduced CF leakage. Under similar conditions, CF leakage from cholesterol-free liposomes composed of saturated phospholipids of increasing fatty acid chain length was dependant on the liquid-crystalline phase transition temperature (Tc) of the phospholipid component. Thus, L-α-dilaureoylphos-phatidylcholine (DLPC), L-α-dimyristoyl phosphatidylcholine (DMPC) and L-α-dipalmitoylphosphatidylcholine (DPPC) with Tc's below or near the temperature of the incubation (37°C) released CF rapidly whereas L-α-diheptedecanoyl phosphatidylcholine (DHPC), L-α-distearoylphosphatidylcholine (DSPC) and hydrogenated egg PC (HPC) liposomes with Tc's above 37°C retained the dye quantitatively. After incorporation of cholesterol into liposomes composed of saturated phospholipids, CF release was reduced for DLPC and DMPC and increased for DPPC, DSPC, DHPC and HPC vesicles. Liposomes with or without cholesterol exhibiting greatest stability (in terms of CF retention) in the presence of serum were injected intravenously into mice and rates of clearance of quenched CF from the circulation measured. Observed clearance rates were linear and, when liposomes contained tritiated phospholipid, identical to those of the radiolabel suggesting retention of liposomal integrity in the intravascular space. However, half-lifes of liposomes ranging from 0.1 to 16 h did not correlate with the physical characteristics of their phospholipid component. After intraperitoneal injection, there was quantitative entry of quenched CF (stable liposomes) into the blood from which it was eliminated at rates corresponding to those observed after intravenous injection. These results suggest that solute retention by liposomes and their half-life in the circulation can be controlled by the appropriate manipulation of liposomal membrane fluidity and composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call