Abstract

In this paper, we research the temperature stability of silicon-based ring resonator thermometers utilizing the Pound-Drever-Hall (PDH) technique. A slight temperature fluctuation of 12.2 mK in 200 s was experimentally detected by immersing the sensor in the triple point of water (TPW) system with ultrahigh precision. Additionally, factors that affect temperature stability, including fundamental thermal noise, laser frequency drift, and power fluctuation were analyzed and calculated theoretically. This shows high consistency with experimental results. Moreover, it is proved that the laser drift can be suppressed from 11.3 pm to 0.013 pm with the developed experimental system based on the PDH technique. The silicon-based ring resonator as a potential platform for precise temperature monitoring is proved based on this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call