Abstract

The effect upon the buckling strength of a soft elastic core attached to a shell of revolution subjected to axisymmetric loads is investigated. The axisymmetric stress problem is solved by using the finite element method to solve the body of revolution problem with an axis of material symmetry subjected to Fourier expandable thermal, body force, and surface traction loading. The governing equations are derived for a triangular toroidal continuum element attached to shell elements. The elastic core influence coefficient matrix of the core is derived by applying the unit line load at the interface nodal point of the core. The inversion of the influence coefficient matrix yields an equivalent stiffness matrix of the core which is then combined with the shell stiffness matrix. Results from this investigation are in good agreement with available analytical and experimental results for cylindrical shells. New results are obtained for conical and spherical shells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.