Abstract

The solution space of axisymmetric liquid drops attached to a horizontal plane is investigated, and the stability of hydrostatic shapes is assessed by a novel numerical linear stability analysis involving discrete perturbations. For a given contact angle and Bond number, multiple interfacial shapes exist with compact, lightbulb, hourglass, and more convoluted pearly shapes. It is found that more than one solution branch can be stable, and that negative curvature at the contact line of a pendant drop is not a prerequisite for instability. Numerical simulations based on the boundary-integral method for Stokes flow illustrate the process of unstable drop detachment. Unstable drops transform into elongated threads with a spherical head whose volume is determined by a Bond number expressing the significance of surface tension. A complementary investigation of the shape and stability of two-dimensional drops attached to a horizontal or inclined plane reveals that hydrostatic shapes are least stable in the inclined configuration and most stable in the pendant or sessile configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.