Abstract

The stability of the alpha helix as an element of secondary structure is examined in the absence of solvation, in the gas phase. Mass-analyzed ion kinetic energy (MIKE) spectrometry was applied to measure intercharge repulsion and intercharge distance in multiply protonated melittin, a polypeptide known to possess a stable helical structure in a number of different environments. The experimental results, interpreted in combination with molecular mechanics calculations, suggest that triply charged melittin retains its secondary structure in the gas phase. The stability if the alpha-helical conformation of the polypeptide in the absence of solvent molecules reflects the fact that a network of intrinsic helical hydrogen bonds is energetically more favorable than unfolded conformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.