Abstract
AbstractThe equilibrium coexistence of sapphirine + quartz is inferred to record temperatures in excess of 980 °C, based on the stability of this assemblage in the simplified chemical system FeO–MgO–Al2O3–SiO2 (FMAS) system. However, the potential for sapphirine to contain significant Fe3+ suggests that the stability of sapphirine + quartz could extend to lower temperatures than those constrained in this ideal system. The Wilson Lake terrane in the Grenville Province of central Labrador preserves sapphirine + quartz‐bearing assemblages in highly oxidized bulk compositions, and provides an opportunity to explore the stability of sapphirine + quartz in such rock compositions within the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) chemical system. Starting with the phase equilibria in FeO–MgO–Al2O3–SiO2–TiO2–O (FMASTO), expansion into K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (KFMASHTO) allows the effect of the stability of the additional phases, biotite, K‐feldspar and melt, on the stability of sapphirine + quartz to be assessed. These phase relations are evaluated generally using P–T projections, and the ultimate extension into NCKFMASHTO is done with pseudosections. Conditions of peak metamorphism in the Wilson Lake terrane are constrained using P–T pseudosections, and the appropriate H2O and O contents to use in the modelled compositions are investigated using T–MH2O and T–MO pseudosections. The peak P–T estimates from a sapphirine + quartz‐bearing sample are ∼960 to 935 °C at ∼10 to 8.6 kbar, similar to estimates from orthopyroxene + sillimanite + quartz ± garnet‐bearing samples. Whereas the sapphirine + quartz‐bearing sample is more Fe‐rich than the orthopyroxene + sillimanite‐bearing sample on an all‐Fe‐as‐FeO basis, once the oxidation state is taken into account, the former is effectively more magnesian than the latter, accounting for the sapphirine occurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.