Abstract

This paper deals with stability properties of Runge-Kutta (RK) methods applied to a non-autonomous delay differential equation (DDE) with a constant delay which is obtained from the so-called generalized pantograph equation, an autonomous DDE with a variable delay by a change of the independent variable. It is shown that in the case where the RK matrix is regular stability properties of the RK method for the DDE are derived from those for a difference equation, which are examined by similar techniques to those in the case of autonomous DDEs with a constant delay. As a result, it is shown that some RK methods based on classical quadrature have a superior stability property with respect to the generalized pantograph equation. Stability of algebraically stable natural RK methods is also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.