Abstract

This paper is concerned with the stability analysis of rotating cylindrical shells conveying a co-rotating fluid. The problem is solved by the finite element method for shells subjected to different boundary conditions. It has been found that the loss of stability for a rotating shell under the action of the fluid having both axial and circumferential velocity components depends on the type of boundary conditions imposed on the shell ends. The results of numerical calculations have shown that for different variants of boundary conditions a simultaneous rotation of shell and the fluid causes an increase or decrease in the critical velocity of axial fluid flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call