Abstract

Improving our understanding of stability across spatial scales is crucial in the current scenario of biodiversity loss. Still, most empirical studies of stability target small scales. We experimentally removed the local space‐dominant species (macroalgae, barnacles, or mussels) at eight sites spanning more than 1000 km of coastline in north‐ and south‐central Chile, and quantified the relationship between area (the number of aggregated sites) and stability in aggregate community variables (total cover) and taxonomic composition. Resistance, recovery, and invariability increased nonlinearly with area in both functional and compositional domains. Yet, the functioning of larger areas achieved a better, albeit still incomplete, recovery than composition. Compared with controls, smaller disturbed areas tended to overcompensate in terms of total cover. These effects were related to enhanced available space for recruitment (resulting from the removal of the dominant species), and to increasing beta diversity and decaying community‐level spatial synchrony (resulting from increasing area). This study provides experimental evidence for the pivotal role of spatial scale in the ability of ecosystems to resist and recover from chronic disturbances. This knowledge can inform further ecosystem restoration and conservation policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.