Abstract

This paper develops the notion of relative demicompact elements of an algebra with respect to a Banach subalgebra as a generalization of relative demicompact linear operators acting on Banach spaces. Drawing on this novel notion, we build a new class of Fredholm perturbation regarding a given Banach subalgebra B which contains its inessential ideal kB and the set of left Fredholm perturbations suggested in [6]. The developed class of Fredholm perturbation exhibits that is a two-sided closed ideal of B that is key in the characterization of the weyl spectrum of elements affiliated with B.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.