Abstract

In this paper, we study the asymptotic stability of rarefaction waves for the compressible isentropic Navier–Stokes equations with density-dependent viscosity. First, a weak solution around a rarefaction wave to the Cauchy problem is constructed by approximating the system and regularizing the initial values which may contain vacuum states. Then some global in time estimates on the weak solution are obtained. Based on these uniform estimates, the vacuum states are shown to vanish in finite time and the weak solution we constructed becomes a unique strong one. Consequently, the stability of the rarefaction wave is proved in a weak sense. The theory holds for large-amplitudes rarefaction waves and arbitrary initial perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.