Abstract

AbstractThis paper presents limits for stability of projection type schemes when using high order pressure-velocity pairs of same degree. Two high orderh/pvariational methods encompassing continuous and discontinuous Galerkin formulations are used to explain previously observed lower limits on the time step for projection type schemes to be stable [18], when h- or p-refinement strategies are considered. In addition, the analysis included in this work shows that these stability limits do not depend only on the time step but on the product of the latter and the kinematic viscosity, which is of particular importance in the study of high Reynolds number flows. We show that high order methods prove advantageous in stabilising the simulations when small time steps and low kinematic viscosities are used.Drawing upon this analysis, we demonstrate how the effects of this instability can be reduced in the discontinuous scheme by introducing a stabilisation term into the global system. Finally, we show that these lower limits are compatible with Courant-Friedrichs-Lewy (CFL) type restrictions, given that a sufficiently high polynomial order or a mall enough mesh spacing is selected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.