Abstract

This paper considers dynamic laws that seek a saddle point of a function of two vector variables, by moving each in the direction of the corresponding partial gradient. This method has old roots in the classical work of Arrow, Hurwicz and Uzawa on convex optimization, and has seen renewed interest with its recent application to resource allocation in communication networks. This paper brings other tools to bear on this problem, in particular Krasovskii’s method to find Lyapunov functions, and recently obtained extensions of the LaSalle invariance principle for hybrid systems. These methods are used to obtain stability proofs of these primal–dual laws in different scenarios, and applications to cross-layer network optimization are exhibited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.