Abstract
We examine the Saffman–Taylor instability for oil displaced by water in a porous medium. The model equations are based on Darcy's law for two-phase flow, with dependent variables pressure and saturation. Stability of plane wave solutions is governed by the hyperbolic/elliptic system obtained by ignoring capillary pressure, which adds diffusion to the hyperbolic equation. Interestingly, the growth rate of perturbations of unstable waves is linear in the wave number to leading order, whereas a naive analysis would indicate quadratic dependence. This gives a sharp boundary in the state space of upstream and downstream saturations separating stable from unstable waves. The role of this boundary, derived from the linearized hyperbolic/elliptic system, is verified by numerical simulations of the full nonlinear parabolic/elliptic equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.