Abstract
We perform bifurcation analysis of plane wave solutions in a one-dimensional complex cubic-quintic Ginzburg--Landau equation with delayed feedback. Our study reveals how multistability and snaking behavior of plane waves emerge as time delay is introduced. For intermediate values of the delay, bifurcation diagrams are obtained by a combination of analytical and numerical methods. For large delays, using an asymptotic approach we classify plane wave solutions into strongly unstable, weakly unstable, and stable. The results of analytical bifurcation analysis are in agreement with those obtained by direct numerical integration of the model equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.