Abstract

The article aims to find the buckling loads for pinned?rotationally restrained shallow circular arches in terms of the rotational end stiffness, geometry and material distribution. The loading is a concentrated vertical force placed at the crown. A geometrically nonlinear model is presented which relates not only the axial force but also the bending moment to the membrane strain. The nonlinear load-strain relationship is established between the strain and load parameters. This equation is then solved and evaluated analytically. It turns out that the stiffness of the end-restraint has, in general, a significant effect on the lowest buckling load. At the same time, some geometries are not affected by this. As the stiffness becomes zero, the arch is pinned-pinned and as the stiffness tends to infinity, the arch behaves as if it were pinned-fixed and has the best load-bearing abilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.