Abstract

This paper is concerned with a stability problem in a periodic domain for a non-isentropic Euler–Maxwell system without temperature diffusion term. This system is used to describe the dynamics of electrons in magnetized plasmas when the ion density is a given smooth function which can be large. When the initial data are close to the steady states of the system, we show the global existence of smooth solutions which converge toward the steady states as the time tends to infinity. We make a change of unknown variables and choose a non-diagonal symmetrizer of the full Euler equations to get the dissipation estimates. We also adopt an induction argument on the order of derivatives of solutions in energy estimates to get the stability result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.