Abstract

We investigate stability properties of a type of periodic solutions of the $N$-vortex problem on general domains $\Omega\subset \mathbb{R}^2$. The solutions in question bifurcate from rigidly rotating configurations of the whole-plane vortex system and a critical point $a_0\in\Omega$ of the Robin function associated to the Dirichlet Laplacian of $\Omega$. Under a linear stability condition on the initial rotating configuration, which can be verified for examples consisting of up to 4 vortices, we show that the linear stability of the induced solutions is solely determined by the type of the critical point $a_0$. If $a_0$ is a saddle, they are unstable. Otherwise they are stable in a certain linear sense. The proof uses a criterion for the bifurcation of multiple eigenvalues, which is applied to suitable Poincar\'e sections. Beyond linear stability, Herman's last geometric theorem allows us to prove the existence of isoenergetically orbitally stable solutions in the case of $N=2$ vortices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.