Abstract

For general relativity, the persistence problem of shock fronts in perfect fluids is also a continuation problem for a pseudo-Riemannian metric of reduced regularity. In this paper, the problem is solved by considerations on a Cauchy problem which combines a well-known formulation of the Einstein–Euler equations as a first-order symmetric hyperbolic system and Rankine–Hugoniot-type jump conditions for the fluid variables with an extra (non-)jump condition for the first derivatives of the metric. This ansatz corresponds to the use of space-time coordinates which are natural in the sense of Israel and harmonic at the same time. As in non-relativistic settings, the shock front must satisfy a Kreiss–Lopatinski condition in order for the persistence result to apply. The paper also shows that under standard assumptions on the fluid's equation of state, this condition actually holds for all meaningful shock data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.