Abstract

The stability of oases is one of the key scientific issues in the process of evolution and management of oases in arid areas. The stability of oases and its representation are also different at different scales. This paper deals with the stability of oases at the landscape patch scale with a case study in the Sangong River Watershed of Tianshan Mountains. We employed the remote sensing, geographic information system and mathematical statistical methods to process the remote sensing images of three periods in 1978, 1987 and 1998, and put forward the approaches for representing the oasis stability at the landscape patch scale. The landscape control capacity of oasis patches is a kind of natural driving forces of the dynamic landscape change. The control capacity of a certain patch type on landscape change increases with its area and shape complexity and contrasts between it and other patches, and reduces with its spatial distances between it and other patches. The patch type with the strongest control capacity should be the matrix of landscape. The conversion of oasis landscape patches results from both natural and anthropogenic driving forces, particularly the anthropogenic driving forces. The higher the conversion proportion is, the lower the stability of patch types is and the stronger the anthropogenic disturbance is. The patch type with the strongest net control capacity in the Sangong River Watershed in 1987 was the desert grassland, which was the matrix of landscapes; but the matrix of landscapes had been changed into the irrigated lands in 1987 and 1998. The control capacities of landscape patches on the oasis landscape evolution have gradually reduced with time in the Sangong River Watershed, and the change extents also have reduced gradually. This reveals that the interaction among the landscape patch types generally tends to reduce, and the natural stability of the oasis landscape patches generally tends to increase. However, the conversion among the landscape patches occurs more frequently due to the increase of intensive human activities, which probably causes the lower stability of environmental resources patch and higher stability of introduced patches in the oasis landscape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call