Abstract
The dynamic stability of laminated composite plates subjected to arbitrary periodic loads is studied based on the first-order shear deformation plate theory. The in-plane load is taken to be a combination of periodic biaxial and bending stress. A set of second-order ordinary differential equations with periodic coefficients of Mathieu–Hill type is formed to determine the regions of dynamic instability based on Bolotin’s method. Numerical results reveal that the dynamic instability is significantly affected by the modulus ratio, number of layer, static and dynamic load parameters. The effects of various important parameters on the instability region and dynamic instability index are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.