Abstract

Several parallel algorithms have been proposed for the solution of triangular systems. The stability of four of them is analysed here: a fan-in algorithm, a block elimination method, a method based on a factorized power series expansion of the matrix inverse, and a method based on a divide and conquer matrix inversion technique. New forward error and residual bounds are derived, including an improvement on the bounds of Sameh and Brent for the fan-in algorithm. A forward error bound is identified that holds not only for all the methods described here, but for any triangular equation solver that does not rely on algebraic cancellation; among the implications of the bound is that any such method is extremely accurate for certain special types of triangular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call