Abstract
We study the stability of orientationally disordered crystal phases in a suspension of colloidal hard dumbbells using Monte Carlo simulations. For dumbbell bond length L/sigma<0.4 with L the separation of the two spheres of the dumbbell and sigma the diameter of the spheres, we determine the difference in Helmholtz free energy of a plastic crystal with a hexagonal-close-packed (hcp) and a face-centered-cubic (fcc) structure using thermodynamic integration and the lattice-switch Monte Carlo method. We find that the plastic crystal with the hcp structure is more stable than the one with the fcc structure for a large part of the stable plastic crystal regime. In addition, we study the stability of an orientationally disordered aperiodic crystal structure in which the spheres of the dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed by taking random pairs of neighboring spheres. Using free-energy calculations, we determine the fluid-aperiodic crystal and periodic-aperiodic crystal coexistence regions for L/sigma>0.88 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.