Abstract

We address the problem of the convergence to equilibrium of a general class of point processes, containing, in particular, the nonlinear mutually exciting point processes, an extension of the linear Hawkes processes, and give general conditions guaranteeing the existence of a stationary version and the convergence to equilibrium of a nonstationary version, both in distribution and in variation. We also give a new proof of a result of Kerstan concerning point processes with bounded intensity and general nonlinear dynamics satisfying a Lipschitz condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.