Abstract

A linear stability analysis to investigate the instabilities in nonlinear distributed-feedback gratings with a finite material response time is presented. The amplification (or attenuation) rate and the frequency of sinusoidal perturbations generated in the grating are calculated for different values of the material response time, detuning, and coupling strength. To give the full picture of the stability boundaries, stability maps are plotted in the two cases of a weak grating and a strong grating. The stable region can be enlarged by increasing a response time of the nonlinearity. The required response time increases with the grating strength. A comparison with numerical simulations of the coupled-mode equations is done to confirm the validity of the stability analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.