Abstract

We consider nonautonomous linear equations $x'=A(t)x$ in a Banach space, and we give a complete characterization of those admitting nonuniform exponential contractions in terms of strict Lyapunov functions. The uniform contractions are a very particular case of nonuniform exponential contractions. In addition, we establish ``inverse theorems'' that give explicitly a strict Lyapunov function for each nonuniform contraction. These functions are constructed in terms of Lyapunov norms, which transform the nonuniform behavior of the contraction into a uniform exponential behavior. Moreover, we use the characterization of nonuniformexponential contractions in terms of strict Lyapunov functions to establish in a very simple manner, in comparison with former works,the persistence of the asymptotic stability under sufficiently smalllinear and nonlinear perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.