Abstract

<p style='text-indent:20px;'>This papers shows that nonlinear filter in the case of deterministic dynamics is stable with respect to the initial conditions under the conditions that observations are sufficiently rich, both in the context of continuous and discrete time filters. Earlier works on the stability of the nonlinear filters are in the context of stochastic dynamics and assume conditions like compact state space or time independent observation model, whereas we prove filter stability for deterministic dynamics with more general assumptions on the state space and observation process. We give several examples of systems that satisfy these assumptions. We also show that the asymptotic structure of the filtering distribution is related to the dynamical properties of the signal.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.