Abstract

A cubic complex Ginzburg–Landau model is derived for the flow of a general fluid near a bifurcation point. Solutions are obtained for the natural convection flow of air in a differentially heated tall closed cavity under non-Boussinesq conditions. The model is used to analyse various types of instabilities. In particular, it is found that nonlinear fluid properties variations with temperature lead to a convective instability of the flow when the temperature difference becomes sufficiently large. This is in contrast to classical results in the Boussinesq limit where the instability is found to be always absolute. The results obtained using the model for an infinitely tall cavity are in excellent agreement with those of direct numerical simulations for a cavity of aspect ratio 40.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.