Abstract
Pseudo-marginal Markov chain Monte Carlo methods for sampling from intractable distributions have gained recent interest and have been theoretically studied in considerable depth. Their main appeal is that they are exact, in the sense that they target marginally the correct invariant distribution. However, the pseudo-marginal Markov chain can exhibit poor mixing and slow convergence towards its target. As an alternative, a subtly different Markov chain can be simulated, where better mixing is possible but the exactness property is sacrificed. This is the noisy algorithm, initially conceptualised as Monte Carlo within Metropolis, which has also been studied but to a lesser extent. The present article provides a further characterisation of the noisy algorithm, with a focus on fundamental stability properties like positive recurrence and geometric ergodicity. Sufficient conditions for inheriting geometric ergodicity from a standard Metropolis–Hastings chain are given, as well as convergence of the invariant distribution towards the true target distribution.Electronic supplementary materialThe online version of this article (doi:10.1007/s11222-015-9604-3) contains supplementary material, which is available to authorized users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.