Abstract

This paper is devoted to the stability of neutral type functional differential equations whose principal terms are small in a certain sense. We derive the explicit conditions for the exponential and absolute stabilities, as well as for the L p -stability. Besides, solution estimates for the considered equations are established. They provide bounds for the regions of attraction of steady states. We also consider some classes of equations with neutral type linear parts and nonlinear causal mappings. These equations include differential, differential-delay, integro-differential, and other traditional equations. The main methodology presented in the paper is based on a combined usage of the recent norm estimates for matrix-valued functions with the generalized Bohl–Perron principle for neutral type functional differential equations. Our approach enables us to apply the well-known results of the theory of matrices to the stability analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.