Abstract
The structural stability and properties of single silicon interstitials in their neutral state are investigated via ab initio methods in 3C- and 4H-SiC. By carefully checking the convergence with Brillouin Zone (BZ) sampling and supercell size we show that the split interstitial along <110> direction and tetrahedrally coordinated structure have similar formation energies in the cubic polytype. We discuss possible artifacts coming from the well known Density Functional Theory (DFT) underestimation of the band gap, which is particularly relevant for 3C-SiC. For 4H-SiC, the most energetically favorable silicon interstitial is found to be the split interstitial configuration ISisp<110> but situated in the hexagonal layer. The defect formation energies in 4H-SiC are in general larger than those in 3C-SiC, implying that the insertion of silicon interstitial introduces a large lattice distortion to the local coordination environments and affect even the second- or third-nearest neighbors. We also present an extensive comparison between well converged plane waves calculations and SIESTA [1,2] calculations based on localised orbitals basis sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.