Abstract

There are some evidences for suggesting that adipose derived stem cells (ADSCs) can be differentiated to the fate of neural cell type. ADSCs can be expanded rapidly in vitro and can be obtained by a less invasive method. In this study, we attempted to compare the stability of neural differentiation in human ADSCs by using two induction protocols.Isolated ADSCs were induced into neural-like cells using diverse effects of two specific procedures. For protocol 1, ADSCs were induced by chemical induction. In protocol 2, ADSCs were treated for sphere formation. Then, the singled cells were cultured in neurobasal media supplemented with special components. Differentiated ADSCs were evaluated for Nestin, MAP2 and GFAP expression by immunocytochemistry and semi quantitative RT-PCR techniques. Moreover, MTT assay was employed to detect cell viability and proliferation.Immunocytochemical analysis of both protocols demonstrated that ADSCs had large expression of the neural-specific markers. In RT-PCR, protocol 1 showed the highest percentage of MAP2 expression, but with time passing, the neural like state was reversible. Protocol 2 found with express of Nestin at week 1, however MAP2 and GFAP expression increased after 3weeks. The neural-like cells produced by protocol 1 led to the further cell death.Comparative analysis showed that neural-like cell differentiation of ADSCs in chemical induction protocol was rapid but transitory, while it was approximately steady in neurosphere formation protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.