Abstract
The stability of nanosized materials differs significantly from the stability of bulk materials. In this study a thermodynamic analysis on the simultaneous oxidation and re-reduction of small metallic cobalt crystallites in the presence of water and hydrogen as a function of the crystallite diameter was performed as a model for catalyst deactivation in the Fischer-Tropsch synthesis. It is shown that spherical cobalt crystallites with a diameter less than 4.4 nm are likely to be oxidized under realistic Fischer-Tropsch synthesis conditions (p(H)(2)(O)/p(H)(2) < 1.5, T = 493 K).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.