Abstract

The sensitivity of critical buckling load and critical stress concerning different geometrical and physical parameters of Euler-Bernoulli nanobeams with defects is studied. Eringen’s nonlocal theory of elasticity is used for the determination of critical buckling load for stepped nanobeams subjected to axial loads for different support conditions. An analytical approach to study the impact of discontinuities and boundary conditions on the critical buckling load and critical stress of nanobeams has been developed. Critical buckling loads of stepped nanobeams are defined under the condition that the nanoelements are weakened with stable crack-like defects. Simply supported, clamped and cantilever nanobeams with steps and cracks are investigated in this article. The presented results are compared with the other available results and are found to be in a close agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.