Abstract

<abstract><p>Traffic waves, known also as stop-and-go waves or phantom jams, appear naturally as traffic instabilities, also in confined environments as a ring-road. A multi-population traffic is studied on a ring-road, comprised of drivers with stable and unstable behavior. There exists a critical penetration rate of stable vehicles above which the system is stable, and under which the system is unstable. In the latter case, stop-and-go waves appear, provided enough cars are on the road. The critical penetration rate is explicitly computable, and, in reasonable situations, a small minority of aggressive drivers is enough to destabilize an otherwise very stable flow. This is a source of instability that a single population model would not be able to explain. Also, the multi-population system can be stable below the critical penetration rate if the number of cars is sufficiently small. Instability emerges as the number of cars increases, even if the traffic density remains the same (i.e., number of cars and road size increase similarly). This shows that small experiments could lead to deducing imprecise stability conditions.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.