Abstract

We consider the incompressible Euler equations in the half cylinder $ \mathbb{R}_{>0}\times\mathbb{T}$. In this domain, any vorticity which is independent of $x_2$ defines a stationary solution. We prove that such a stationary solution is nonlinearly stable in a weighted $L^{1}$ norm involving the horizontal impulse, if the vorticity is non-negative and non-increasing in $x_1$. This includes stability of cylindrical patches $\{x_{1}<\alpha\},\; \alpha>0$. The stability result is based on the fact that such a profile is the unique minimizer of the horizontal impulse among all functions with the same distribution function. Based on stability, we prove existence of vortex patches in the half cylinder that exhibit infinite perimeter growth in infinite time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.