Abstract

Hydrological models are often used for studying the hydrological effects of climate change; however, the stability of model performance and parameter values under changing climate conditions has seldom been evaluated and compared. In this study, three widely-used rainfall–runoff models, namely the SimHYD model, the HBV model and the Xin’anjiang model, are evaluated on two catchments subject to changing climate conditions. Evaluation is carried out with respect to the stability in their performance and parameter values in different calibration periods. The results show that (a) stability of model performance and parameter values depends on model structure as well as the climate of catchments, and the models with higher performance scores are more stable in changing conditions; (b) all the tested models perform better on a humid catchment than on an arid catchment; (c) parameter values are also more stable on a humid catchment than on an arid catchment; and (d) the differences in stability among models are somewhat larger in terms of model efficiency than in model parameter values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call