Abstract

The composition of a reduced C–O–H fluid was studied by the method of chromatography–mass spectrometry under the conditions of 6.3 GPa, 1300–1400°C, and fO2 typical of the base of the subcratonic lithosphere. Fluids containing water (4.4–96.3 rel. %), methane (37.6–0.06 rel. %), and variable concentrations of ethane, propane, and butane were obtained in experiments. With increasing fO2, the proportion of the CH4/C2H6 peak areas on chromatograms first increases and then decreases, whereas the CH4/C3H8 and CH4/C4H10 ratios continually decrease. The new data show that ethane and heavier HCs may be more stable to oxidation, than previously thought. Therefore, when reduced fluids pass the “redox-front,” carbon is not completely released from the fluid and may be involved in diamond formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call