Abstract

BackgroundBiological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network.Methodology/Principal FindingsStarting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic condition-dependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple observations about the changes of metabolic concentrations. The approach was tested with Escherichia coli as a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diauxie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical pathways, and (3) independently of the response scale, based on their importance in the reorganization of the correlation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response.Conclusions/SignificanceNetwork-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-based approach does not rely on major changes in concentration to identify metabolites important for stress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches.

Highlights

  • Biological systems exposed to new environmental cues react by adapting their cellular and physiological program in order to optimize the likelihood of survival under the new condition

  • Obtained data were normalized to internal standards and optical density of the culture at the moment of sampling

  • E. coli towards four different stress conditions and control conditions over time on the metabolite level

Read more

Summary

Introduction

Biological systems exposed to new environmental cues react by adapting their cellular and physiological program in order to optimize the likelihood of survival under the new condition. The relative biological (physiological) simplicity of unicellular organisms (e.g., Saccharomyces cerevisiae, E. coli) and availability of their respective annotated genomes have prompted the employment of integrated, systems-oriented approaches, often relying on transcriptome data, to study the response towards changing environment [3,4]. In contrast to the abundance of systems-oriented approaches describing changes on the transcriptome or interactome level, relatively few studies have employed the metabolome [16,17]. Biological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call