Abstract
Recently the authors showed that the Martin boundary and the minimal Martin boundary for a censored (or resurrected) α-stable process Y in a bounded C 1,1 -open set D with α∈(1,2) can all be identified with the Euclidean boundary ∂D of D. Under the gaugeability assumption, we show that the Martin boundary and the minimal Martin boundary for the Schrödinger operator obtained from Y through a non-local Feynman-Kac transform can all be identified with ∂D. In other words, the Martin boundary and the minimal Martin boundary are stable under non-local Feynman-Kac perturbations. Moreover, an integral representation of nonnegative excessive functions for the Schrödinger operator is explicitly given. These results in fact hold for a large class of strong Markov processes, as are illustrated in the last section of this paper. As an application, the Martin boundary for censored relativistic stable processes in bounded C 1,1 -smooth open sets is studied in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.