Abstract

In Part I we developed stability concepts for discrete chains, together with Foster–Lyapunov criteria for them to hold. Part II was devoted to developing related stability concepts for continuous-time processes. In this paper we develop criteria for these forms of stability for continuous-parameter Markovian processes on general state spaces, based on Foster-Lyapunov inequalities for the extended generator. Such test function criteria are found for non-explosivity, non-evanescence, Harris recurrence, and positive Harris recurrence. These results are proved by systematic application of Dynkin's formula. We also strengthen known ergodic theorems, and especially exponential ergodic results, for continuous-time processes. In particular we are able to show that the test function approach provides a criterion for f-norm convergence, and bounding constants for such convergence in the exponential ergodic case. We apply the criteria to several specific processes, including linear stochastic systems under non-linear feedback, work-modulated queues, general release storage processes and risk processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.