Abstract

In this paper we extend the results of Meyn and Tweedie (1992b) from discrete-time parameter to continuous-parameter Markovian processes Φ evolving on a topological space.We consider a number of stability concepts for such processes in terms of the topology of the space, and prove connections between these and standard probabilistic recurrence concepts. We show that these structural results hold for a major class of processes (processes with continuous components) in a manner analogous to discrete-time results, and that complex operations research models such as storage models with state-dependent release rules, or diffusion models such as those with hypoelliptic generators, have this property. Also analogous to discrete time, ‘petite sets', which are known to provide test sets for stability, are here also shown to provide conditions for continuous components to exist.New ergodic theorems for processes with irreducible and countably reducible skeleton chains are derived, and we show that when these conditions do not hold, then the process may be decomposed into an uncountable orbit of skeleton chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.