Abstract

This paper examines the problem of asymptotic stability for Markovian jump generalized neural networks with interval time-varying delays. Markovian jump parameters are modeled as a continuous-time and finite-state Markov chain. By constructing a suitable Lyapunov-Krasovskii functional (LKF) and using the linear matrix inequality (LMI) formulation, new delay-dependent stability conditions are established to ascertain the mean-square asymptotic stability result of the equilibrium point. The reciprocally convex combination technique, Jensen's inequality, and the Wirtinger-based double integral inequality are used to handle single and double integral terms in the time derivative of the LKF. The developed results are represented by the LMI. The effectiveness and advantages of the new design method are explained using five numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call