Abstract

The free-stream turbulence induced transition occurring under typical low-pressure turbine flow conditions is investigated by comparing linear stability theory with wind tunnel measurements acquired over a flat plate subjected to high turbulence intensity. The analysis was carried out, accounting for three different Reynolds numbers and four different adverse pressure gradients. First, a non-similarity-based boundary layer (BL) solver was used to compute base flows and validated against pressure taps and particle image velocimetry (PIV) measurements. Successively, the optimal disturbances and their spatial transient growth were calculated by coupling classical linear stability theory and a direct-adjoint optimization procedure on all flow conditions considered. Linear stability results were compared with experimental particle image velocimetry measurements on both wall-normal and wall-parallel planes. Finally, the sensitivity of the disturbance spatial transient growth to the spanwise wavenumber of perturbations, the receptivity position, and the location where disturbance energy is maximized were investigated via the built numerical model. Overall, the optimal perturbations computed by linear stability theory show good agreement with the streaky structures surveyed in experiments. Interestingly, the energy growth of disturbances was found to be maximum for all the flow conditions examined, when perturbations entered the boundary layer close to the position where minimum pressure occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.