Abstract

This article provides necessary and sufficient conditions on the structure of a metric space such that for various vector lattices of real-valued Lipschitz-type functions defined on the metric space, the vector lattice is stable under pointwise product, and such that the reciprocal of each non-vanishing member of the vector lattice remains in the vector lattice. In each case the family of metric spaces for which the first property holds contains the family of metric spaces for which the second property holds. At the end we prove some extension theorems for classes of locally Lipschitz functions that complement known results for Cauchy continuous functions and for uniformly continuous functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.