Abstract
The stability or instability of various linear shear flows in shallow water is considered. The linearized equations for waves on the surface of each flow are solved exactly in terms of known special functions. For unbounded shear flows, the exact reflection and transmission coefficients R and T for waves incident on the flow, are found. They are shown to satisfy the relation |R|2= 1+ |T|2, which proves that over reflection occurs at all wavenumbers. For flow bounded by a rigid wall, R is found. The poles of R yield the eigenvalue equation from which the unstable mides can be found. For flow in a channel, with two rigid walls, the eigenvalue equation for the modes is obtained. The results are compared with previous numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.